Über 80 € Preisvorteil gegenüber Einzelkauf!
Mathe-eBooks im Sparpaket
Von Schülern, Studenten, Eltern und
Lehrern mit 4,86/5 Sternen bewertet.
47 PDF-Dateien mit über 5000 Seiten
inkl. 1 Jahr Updates für nur 29,99 €.
Ab dem 2. Jahr nur 14,99 €/Jahr.
Kündigung jederzeit mit wenigen Klicks.
Jetzt Mathebibel herunterladen

Trigonometrische Funktionen

In diesem Kapitel schauen wir uns an, was trigonometrische Funktionen sind.

Erforderliches Vorwissen

Einordnung 

Wahrscheinlich bist du in der Geometrie zum ersten Mal der Trigonometrie begegnet: Der Begriff kommt aus dem Griechischen und bedeutet Dreiecksmessung. Mithilfe von Sinus, Kosinus und Tangens hast du bestimmt schon einmal Seiten oder Winkel in einem Dreieck berechnet.

Daneben gibt es noch eine weitere interessante Anwendung aus der Analysis:

Anwendung 

Die trigonometrischen Funktionen sind die grundlegenden Funktionen zur Beschreibung periodischer Vorgänge in den Naturwissenschaften.

Periodische Funktionen haben die Eigenschaft, dass sich ihre Funktionswerte in regelmäßigen Abständen wiederholen. Die Abstände zwischen dem Auftreten der gleichen Funktionswerte werden Periode genannt. Machen wir uns diesen Begriff anhand eines Beispiels deutlich:

Beispiel 1 

Die Abbildung zeigt den Graphen der Sinusfunktion, die sog. Sinuskurve.

Die Funktionswerte der Sinusfunktion wiederholen sich im Abstand von $2\pi$.

$2\pi$ ist eine Angabe im Bogenmaß.

Abb. 1 / Veranschaulichung einer Periode 

Beispiele 

Die wichtigsten trigonometrischen Funktionen sind

NameFunktionsgleichung
Sinusfunktion$y = \sin(x)$
Kosinusfunktion$y = \cos(x)$
Tangensfunktion$y = \tan(x)$

Die Argumente ($x$-Werte) der trigonometrischen Funktionen können im Gradmaß (Einheit: Grad) oder im Bogenmaß (Einheit: Radiant) vorliegen. Zur Darstellung der Funktionen in einem Koordinatensystem ist es allerdings üblich, das Bogenmaß zu verwenden. Im Setup deines Taschenrechners kannst du zwischen den Einheiten Grad (DEG) und Radiant (RAD) wechseln.

Zur Erinnerung: $360^\circ$ (Gradmaß) entsprechen $2\pi$ (Bogenmaß).

Noch Fragen? Logo von Easy-Tutor hilft!

Probestunde sichern